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Abstract 

We apply the time-domain  least-mean-square  (TDLMS)  adaptive  filter to suppress  narrow-band 

radio-frequency  interference (RFI) in  wideband  radars.  Simulation is used to show the working 

principles of the  adaptive filter. The filter  performance  with  respect to  the filter  parameters  (filter 

length, delay, and step-size) is analyzed in terms of the  radar performance  parameters  such  as 

the  integrated sidelobe  ratio  (ISLR) and peak  sidelobe ratio  (PSLR). Finally, the algorithm is 

tested  with  P-band  synthetic  aperture  radar  (SAR) data collected by the  NASA/JPL  airborne 

SAR (AIRSAR)  in different noisy environments. 

1 Introduction 

The  dual requirement of a low radar frequency for  foliage and/or ground  penetration  and  a wide 

radar  bandwidth for high resolution  in  wideband radar systems  leads to  radars  operating in fre- 
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quency  bands occupied by other  radio  systems,  such as radio  communications,  navigation, police, 

emergency rescue, . . . . Table 1 gives the radio frequency allocation as determined by the  FCC 

[l] (this  can be viewed online at http://www.ntia.doc.gov/osmhome/redbook/redbook.html) and 

Table 2 shows the operating  bandwidths of some wideband  systems.  To see the  potential  damage 

RFI may cause to SAR image quality,  Fig. 1 plots the average range spectrum of a NASA/JPL 

P-band AIRSAR scene (Mount  Sonoma)  near Petaluma, California, and Fig. 2 displays the heavily 

contaminated image. The  RFI energy is spread  out over the whole scene, displaying artifacts  and 

masking target’s presence (roads,  streets, small  stand-alone  objects, . . . ) ,  specially in the low SNR 

region (upper  right  corner).  The RFI artifacts  in  Fig. 2 are especially obvious when contrasted 

with  Fig. 3, the  same scene filtered by the TDLMS. Any subsequent data processing such as ter- 

rain classification, polarimetry, or interferometry would be  degraded by the presence of RFI.  Thus, 

suppressing RFI’s energy spikes in the  spectrum while minimizing signal  distortion is necessary to 

produce high quality SAR products. 

The problem of removal or enhancement of narrow-band  interference from wideband  signals 

has long been an active research topic  in various disciplines. Examples can be found in the signal 

processing [2], communications  [3], and  lately  in  radar [4, 5, 6, 71 and image processing [8] commu- 

nities.  Adaptive filters [9, 101 have played a vital  part in solving this problem. The most  popular 

adaptive  filtering  technique is the least-mean-square (LMS) algorithm, which has enjoyed enormous 

popularity  due to  its good  compromise for the convergence speed, final misadjustment,  stability, 

complexity and  adaptability  that  are usually required at the same  time.  This  algorithm utilizes 

a gradient  search  technique to determine  the filter coefficients which  minimize the mean  square 

prediction  error  [9]. The LMS algorithm requires only 2N operations  per  iteration for real data  (N 

for  complex data)  and no explicit determination of the correlation coefficients of the  input data [ll]. 

To justify the need for using adaptive filtering, Fig. 5 shows the cumulative and block spectra of a 

scene. The cumulative spectrum displays the energy of all the  RFI sources  averaged over 100,000 

radar pulses. In  constrast,  the block spectrum averages only 50 radar pulses per block. It can 

be seen from the block spectrum  that  RFI energy is highly non-stationary  in  time,  thus  justifying 

the employment of adaptive filtering. Similar  observations  can be  obtained from Fig. 5 that shows 

similar  cumulative and block spectra of another scene. 
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The time-domain  least-mean-square  adaptive filter in  Fig.  6  can be intuitively  described  as 

follows. The delay A causes  decorrelation between the wideband  components (radar signal) of 

the primary  input d and  the reference input x .  The  adaptive filter estimates the narrow-band 

component y corresponding to  the  RFI signal, effectively forming an equivalent transfer  function, 

which is similar to  that of narrow-band filters centered at the frequencies of the narrow-band 

components of the  input signal. The wideband  component of the delayed input is  rejected, while 

the phase difference of the narrow-band  components is readjusted so that  they cancel  each other 

at the summing junction, producing a minimum error  signal  consisting of mainly the wideband 

component. Uses of the TDLMS  adaptive filter to  detect signals  (such as sinusoids,  narrow-band 

and chirp-like signals, . . . ) in  white  Gaussian noise have been  described  in [ l l ] .  

In  this  study, we  will apply the TDLMS  algorithm to remove narrow-band RFI from wideband 

SAR signals. We first describe the point  target  simulator.  Then,  the  stability  and convergence of 

the filter are analyzed in  detail  in  terms of the filter parameters (filter length, delay, and  stepsize) 

and  input  characteristics (signal bandwidth,  sampling  rate,  and SNR). It has been  shown that  the 

filter output converges more rapidly than  the filter weights [11]. Consequently, the evaluation of the 

filter performance is based on the SAR compressor output  with  the help of the  radar  parameters, 

such as ISLR and  PSLR. Finally, we show cleaned images obtained by applying the adaptive filter 

to  P-band  data collected by the  NASA/JPL  TOPSAR/AIRSAR  system [12, 131 and processed 

with  the interferometric SAR processor developed at  JPL [14]. Future efforts are included  in the 

conclusion section. Some of the results have been  presented  in [15, 161. 

2 The TDLMS Algorithm 

The TDLMS  adaptive filter shown in  Fig.  6  consists of an L-weight linear  prediction filter in which 

the coefficients wl(k)  are adaptively updated at the  input sampling rate, f s .  We define the L-element 

input d and weight vectors w as 

d(n) = [ d ( n ) , d ( n  - I), . . . , d ( n  - L + 1 ) I T  
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The  superscript T denotes the  matrix  transpose.  In  the RFI suppression  problem, a reference signal 

is obtained by delaying the received signal d ( n )  to give z(n) = d ( n  - A) for some time delay A. 

The  output of the filter is a linear  combination of these delayed past  input values weighted by the 

filter weight vector 

y(n) = wT(n) * ~ ( n )  = wT(n) * d(n - A) 

This gives an  estimate of the RFI signal. The prediction error, which is the  radar signal of interest, 

is obtained by subtracting  the  RFI  estimate y from the received signal d 

The value of A is chosen to remove the correlation between the wideband  components of the  input 

signal d ( n )  and  the  (predicted) filter output y(n). The filter weights w(n) are selected so as to 

minimize the mean  square  error  (MSE) E[e2(n)], where E[.] is the expectation  operator. The 

Widrow-Hoff  LMS algorithm  leads to a recursive relation for updating  the weight vector [9, 101 

w(n + 1) = w(n) + px(n)e*(n) ( 5 )  

where p is the  adaptation  constant  or  stepsize  parameter.  This  parameter controls the trade-off 

between convergence speed and final misadjustment [9, 10, 111. Large values of p lead to faster 

convergence at  the expense of large final misadjustment. The stepsize is preselected based  on the 

desired performance  characteristics which, in  our  case, are  the  radar performance parameters. 

The behavior of the LMS adaptive filter has  been extensively studied  and well published  in the 

literature (see [9, 10, 111 and  the references therein). Here, we only give a summary of the  main 

features  and  important results.  Let X, be  the eigenvalues associated with  the  input correlation 
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matrix Rdd =< d(n)dH(n) >, where d was defined in  Eq. 1 and  the  superscript H denotes 

complex conjugate  transpose.  Then, the learning time of the adaptive filter for each mode is 

1 
rn = - 

4pxn 

With one sinusoid in  white  Gaussian noise, the convergence time  can  be expressed as 

1 
7 =  

2 p 4  (1 + $SNR)  

where on is the average noise power and SNR is the signal-to-noise ratio. We note that in  our 

RFI problem gn is the power of the  radar signal, that is, the  radar signal is treated as noise as 

far as the adaptive filter concerns. The SNR  will then  be  the interference-to-signal-to-noise ratio 

(ISNR).  Another  important  parameter  is  the final misadjustment  error  (after convergence). It is 

defined to  be  the  ratio of the mean-squared  error  produced by the LMS algorithm to  the minimum 

mean-squared  error  produced by the optimum  Wiener  filter. Its expression can  be  approximated 

as 

where x ,  is defined as the average  eigenvalue of the  input correlation matrix Rdd 

1 
M .  

M 
x ,  = - xi 

z= 1 

3 The  Point-Target  Simulator 

The  point-target  simulator, used in verifying the  algorithm  and making parameter selections, is 

shown in Fig. 7. The  radar’s  parameters  are specified in the top-left corner.  Inputs consist of the 

radar  bandwidth, chirp  slope, pulse length,  and the caltone’s amplitude  and frequency. Future 

wideband radar systems may  need to notch certain  radio frequencies as required by the FAA, FCC, 
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and military  [17, 181. This requirement is also implemented  in the simulator by specifying the 

types  (FIR or IIR) of the notch  filter  together  with its frequency  locations  and stopbands. Noise 

consists of thermal  random noise, discrete  sinusoidal  tones,  terrestrial  narrow-band  modulation 

signals  (AM, FM, . . . ) ,  and  satellite  communication  signals  (ASK,  PSK,  QASK,  FSK,  MSK, . . . ) .  

They  are  characterized by their  amplitudes,  frequency  locations,  and  bandwidths  with  respect to 

the  radar signal.  Their  initial  phases  are picked from a  uniform  distribution of random  phase.  (In 

the  future GeoSAR system  (operational  in  Sept.  1999),  a sniffer pulse is used to measure the  RFI 

environment, so that  this  feature is also  included  in the  simulator.)  The combined radar-and-noise 

signal is  fed into  an  A/D converter using either  8-bit or block-floating-point  quantization (BFPQ) 

scheme. The  A/D  output is the  input  to  the LMS adaptive  filter which  gives as  its  outputs  the 

estimated RFI signal and  the cleaned radar  signal.  Fig.  8 shows the time-domain waveforms and 

frequency spectra of the components of a  simulated  signal. The chirp  signal  has  a  bandwidth of 40 

MHz and  its signal-to-noise  ratio  (SNR)  is 10 dB.  The  RFI consists of six  tones  and two FM signals. 

The tones  are at frequencies f 3 ,   f 1 0 ,  and 515 MHz, with  amplitudes  (interference-to-signal ratio, 

ISR) 12, 13,  and 17 dB, respectively. The  FM signals have center  frequencies of k12 MHz,  with 

bandwidths of 100 kHz (typical for FM radio  channels),  and  ISRs of 15 dB.  The  initial phases of 

all RFI signals  are picked at  random. 

4 Simulation Results, Performance Analysis, and Real Images 

4.1 Simulation Results and the Radar Parameters 

Fig.  9  compares the signal waveforms and  spectra of the  input,  output,  and ideal  signals  (in the 

absence of RFI, containing just  the  radar signal and random  Gaussian  noise). As evident from the 

output  spectra, most of RFI energy has  been removed and  the  output waveform  is  close to  the ideal 

case.  Fig.  10 shows the  outputs of the pulse compression filter for the unfiltered,  filtered,  and  ideal 

radar signals. The presence of RFI makes it difficult to  detect  the  target  (top  graph).  The  adaptive 

filter helps in  reducing the sidelobe energy and enhance the  target visibility  (middle graph).  The 

compressor output of the filtered  signal  compares  favorably  with the ideal case (bottom  graph).  In 

order to evaluate the  algorithm,  it is necessary to define some  performance  parameters. Among the 

parameters useful for characterizing  filter  performance are  the ISLR and  PSLR.  The ISLR is the 
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ratio of the energy  in the sidelobe (SL) to  the energy in the main  lobe (ML). And the  PSLR is the 

ratio of the  peak value of the sidelobe to  the peak value of the main  lobe. With g(r) denoting  the 

output of the compressor filter, the ISLR  and  PSLR  are defined as 

4.2 Performance with Respect to the Filter Parameters 

The design parameters for the LMS adaptive filter are  the step-size p ,  filter length L,  and decor- 

relation delay A. The objective is to  study  the variation of the performance parameters, ISLR 

and  PSLR, in terms of these design parameters. Since it is difficult to get closed form  solution 

relating  these two sets of parameters, one simulation  technique is to fix all but one parameter  at 

each simulation  stage. For example, we first let L = 128, A = 1, and  study  the behavior of ISLR 

and  PSLR as functions of the step-size parameter p .  The  results  are shown in  the  top two graphs 

of Fig. 11. In each graph,  the  top (circles) and  bottom  (squares) horizontal dotted lines indicate 

the limiting values in the cases of an unfiltered and ideal signal; the filter  performance  (triangles, 

solid lines) would be somewhere in between, unless the filter is unstable.  Both ISLR and  PSLR 

initially take high values for small p .  They  then decrease as p gets  larger and reach a minimum at 

some optimal value of p .  Finally, they increase  again at larger values of p .  This  can  be explained if 

we recall that  the  stepsize parameter  controls the trade-off between convergence speed (inversely 

proportional to p ,  shown in Eq. 6) and final misadjustment  (proportional to p ,  see Eq.  8). Small 

values of p imply slow convergence, leading to large  residual RFI energy. On the  other  hand, large 

values of p increase the final misadjustment  error  and may cause the filter to  be  unstable.  Both 

cases lead to high ISLR and  PSLR.  Optimal value of p for given L and A was found to be p = 0.35. 

The middle graphs display the ISLR and  PSLR  as  functions of the filter length L for p = 0.35 and 

A = 1. For short filter lengths, the adaptive filter does  not have  enough resolution or cannot  form 

sharp notches at  the RFIs’ frequencies, leading to high signal  distortion.  Attempting to over-resolve 

the narrowband signals by increasing the filter length  degrades the performance  because the final 
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misadjustment noise  is also proportional to  the filter  length as expressed  in  Eq. 8. Finally, the 

bottom graphs  plot the ISLR  and  PSLR  in terms of the decorrelation  delay A for p = 0.35 and 

L = 512. We note  that  a delay of one sample is enough to decorrelate the wideband  components 

(radar signals) of the  primary  and reference inputs.  Further  increasing of A has little effect on the 

performance.  In cases where the signal is oversampled or the  radar  bandwidth is reduced,  it is then 

necessary to use A > 1 to decorrelate the signals. The  optimal values for the filter’s  parameters 

are L = 512, p = 0.1, and A = 1, corresponding to gains of 25 dB and 22 dB for the ISLR  and 

PSLR,  respectively (see the  bottom  graphs in  Fig. 11). These  optimal values were used to produce 

the results  in  Figs. 9 and 10. 

4.3 NASA/JPL  P-Band  TOPSAR/AIRSAR Images 

Using the  optimal design parameters given above, we have applied the TDLMS  adaptive  filter to a 

test  site  near  Petaluma,  California.  The  P-band data (40 MHz bandwidth)  has  been  acquired by the 

NASA/JPL  TOPSAR/AIRSAR  instrument [12, 131 in 1996 and processed with  an interferometric 

SAR processor developed at JPL [14]. The average spectra of 100,000 pulses  are  plotted  in  Fig. 12. 

The  top  spectrum clearly shows the presence of RFI, and  the  bottom shows the efficacy  of our 

cleaning technique.  There  remains  some RFI energy  in the lower and  upper  limits of the frequency 

spectrum. Since we are using a  Hamming window to compress the signal, the residual RFI energy 

is greatly attenuated. We also  note that  the filter  preserves the caltone  frequency at  the far left 

position of the frequency spectrum  (the caltone is essential for good calibration of channels’  gains). 

The range-Doppler image of an agriculture  area is shown in  Fig. 3. Compared  with the  RFI- 

contaminated image in  Fig. 2 the cleaned image shows remarkable  improvement. First,  the  target’s 

visibility is greatly  enhanced as shown in the left close-up images (denoted  as “flatrfi.gif”  and 

“flat-td.gif”)  in  Fig. 13. This region corresponds to point  A  in the original  image,  Fig. 2. We 

can clearly see the  streets  and  other small  stand-alone  features which are very hard to detect in 

the original  image.  Second, the  adaptive filter  also removes artifacts  due to RFI as  demonstrated 

in the right close-up images (denoted  as “hillrfi.gif”  and  “hill-td.gif”) in  Fig. 13. This is region 

B, an  area of rolling hills and  pastureland , in the original  image,  Fig. 2. We observe that  it is 

difficult to distinguish between the real  features  running NW-SE in the upper left corner  and the 

artificial stripes resulting from spreading of RFI energy. The filtered image is effectively free of 
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these  artifacts, clearly showing rural roads and  other  features. 

5 Conclusion 

We have presented an adaptive filtering technique to remove RFI from wideband SAR signals. The 

filter employs the least-mean-square  algorithm to  update  the filter weights. This weight update 

scheme requires no  matrix solving or calculation of the correlation coefficients. The filter design 

is very simple since there  are only three design parameters.  Yet,  the filter can  adapt  to  the noisy 

RFI environment. We have also described the simulation  procedure to show the filter’s working 

principle and  to  obtain  the  optimal values for the design parameters.  Finally, we have displayed 

the RFI-contaminated image and compared it  with a much  improved image.  Our future efforts 

include fast versions of the adaptive  filter,  automatic  determination of the design parameters, 

and assessment of RFI effects in other SAR signal processing involved in image formation,  target 

classification, polarimetry, and interferometry. In  particular,  part I1 and I11 of the  paper will discuss 

the frequency-domain LMS(FDLMS) [19] and filter-bank LMS (FBLMS) [20] approaches. 
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Frequency 
Bands 
9 ” 535 
(kHz) 

535 -- 1605 
(kHz) 

(kHz) 

(MHz) 

1605 -- 4000 

4 - 29.7 

29.7 - 108 
(MHz) 

108 - 960 
(MHz) 

960 -1215 
(MHz) 

(MHz) 
1215 -- 10500 

Usages 

Fixed and mobile 
(aeronautical, land, maritime) 
stations 
AM broadcasting stations 

Fixed and mobile stations 

Fixed and mobile stations, 
broadcasting stations, 
space and earth stations 
Fixed and mobile stations, 
aeronautical radionavigation stations 
(marker beacons on  75 MHz), 
FM  and TV broadcasting stations, 
space and earth stations 
Fixed and mobile stations, 
radiodetermination stations, 
TV broadcasting stations, 
space and earth stations 
Aeronautical radionavigation stations, 
IFF/ATCRBS of similar type stations 
Fixed and mobile stations, 
radiodetermination stations, 
space and earth stations 

Table 1: Radio  frequency  allocation. 
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S A R  Systems I Operating Frequencies I Status 

NASNJPL P-Band AIRSAR 

operational 1217 -- 1257 MHz NASNJPL L-Band AIRSAR 
operational 407 -- 447 MHz 

P-Band GeoSAR 

operational 10,20, and 40 MHz L-Band SIR-C/X-SAR 

operational in 1999 270 -- 430 MHz 

Loral Airborne S A R  500 -- 800 MHz I operational 

ERIM UWB P-3 SAR operational 200 -- 900 MHz 

ARL UWB Rail SAR operational 60 MHz -- 1 GHz 

Table 2: Wide- and ultra-wideband SAR systems. 
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Figure 1: Average range  spectrum of 100,000 pulses of a scene (Mount  Sonoma)  near Petaluma, 

California. 
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Figure 2: RFI-contaminated range-Doppler image of Mount Sonoma, California. 
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Figure 3: Range-Doppler image of Mount Sonoma, California; cleaned with  the  TDLMS  adaptive 

filter. 
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Figure 4: Cumulative  (above) and block (below) spectra of a  scene. 
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Figure 5 :  Cumulative (above) and block (below) spectra of a scene. 
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Figure 6: The TDLMS  adaptive  filter. 
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Waveform Parameters 
Bandwidth 
Chirp Slope 
Pulse Length 
Caltone (Frequency, A) 
Notching Parameters 
-Notching Function 
-Notch Locations 
-Notch Width 

I RFI 
Slowly Varying 

(greater than Sniff Period) 

Rapidly Varying" 
RFI 

(less than Sniff Period) 

Radar Signal 
Generator 

I 

RFI  Sources 

Tones (A,f,Q) 

White Noise 

Narrow Band FM 

Phase Modulated 

Amplitude Modulated 

Sienal Combiner 
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Figure 7 :  RFI simulator block diagram. 
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Signal Waveforms 
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Figure 8: Time-domain and frequency-domain components of input signal. 
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Figure 10: Comparison of outputs of pulse compression filter. 
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ISLR's PSLR's 
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Figure 11: Performance  parameters ISLR (left) and PSLR (right)  in  terms of the step-size parameter 

p (top), filter length L (middle),  and  decorrelation delay A (bottom). 
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Figure 12: Average spectrum of 100,000 pulses (top: unfiltered, bottom:  filtered). 
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Figure 13: Close-up images of region A and B in Fig. 2. 
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